首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   3篇
大气科学   9篇
地球物理   11篇
地质学   15篇
海洋学   5篇
天文学   7篇
自然地理   2篇
  2022年   1篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有49条查询结果,搜索用时 475 毫秒
11.
In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ~200 to >?1,000  years (vertical thaw rates <?0.1–0.5  m?yr?1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.  相似文献   
12.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   
13.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   
14.
Image gathers as a function of subsurface offset are an important tool for the inference of rock properties and velocity analysis in areas of complex geology. Traditionally, these gathers are thought of as multidimensional correlations of the source and receiver wavefields. The bottleneck in computing these gathers lies in the fact that one needs to store, compute, and correlate these wavefields for all shots in order to obtain the desired image gathers. Therefore, the image gathers are typically only computed for a limited number of subsurface points and for a limited range of subsurface offsets, which may cause problems in complex geological areas with large geologic dips. We overcome increasing computational and storage costs of extended image volumes by introducing a formulation that avoids explicit storage and removes the customary and expensive loop over shots found in conventional extended imaging. As a result, we end up with a matrix–vector formulation from which different image gathers can be formed and with which amplitude‐versus‐angle and wave‐equation migration velocity analysis can be performed without requiring prior information on the geologic dips. Aside from demonstrating the formation of two‐way extended image gathers for different purposes and at greatly reduced costs, we also present a new approach to conduct automatic wave‐equation‐based migration‐velocity analysis. Instead of focusing in particular offset directions and preselected subsets of subsurface points, our method focuses every subsurface point for all subsurface offset directions using a randomized probing technique. As a consequence, we obtain good velocity models at low cost for complex models without the need to provide information on the geologic dips.  相似文献   
15.
Space-borne observations reveal that 20–40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative–convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.  相似文献   
16.
Detailed acoustic surveys of benthic sediments were conducted in July 1995 and September 1998 in the vicinity of Humboldt Bay, California. During these surveys, a band of enhanced acoustic backscatter was observed offshore from the bay entrance, approximately parallel to the isobaths, in water depths ranging from 16-24 m. In order to assess the cause of the increase in backscatter levels, a more comprehensive study was conducted in August and September 1999 using 100 kHz side-scan sonar, bottom grab sampling and underwater video recording. New observations indicated that a dense population of sand dollars ( Dendraster excentricus ) coincided with the enhanced backscatter band. Compared to the two previous acoustic studies, the central section of the band expanded westward by 180 m and the southern section of the band shifted eastward by 160 m, possibly resulting from a change in the biological or physical factors which influence the location and breadth of sand dollars. The relationship between high sand dollar abundance and enhanced acoustic backscatter was further verified in the nearshore region off Samoa Beach California, where a dense, banded population of sand dollars was previously observed. Video footage confirmed the presence of a band of sand dollars, also nominally parallel to the isobaths, in water depths of 8-15 m. A band of enhanced backscatter coincided with the dense sand dollar population. The identification of dense aggregations of sand dollars through enhanced acoustic backscatter could lead to the use of acoustic techniques to study sand dollar distributions and abundance.  相似文献   
17.
We present a novel numerical approach to construct quantitative tectonic models from crustal velocity distributions derived from local earthquake tomography. Independent constraints on the location and orientation of structures are obtained from earthquake hypocenters and seismic reflection profiles. An application of this method is given for the southern end of the Upper Rhine Graben (northwestern Europe). Kinematic boundary conditions are imposed on the structural model to investigate the large scale intraplate deformation in the region. A 3-D finite element code is used to calculate the displacements, the distribution of stresses, and the potential for brittle failure in the Graben. The modeling takes into account the intersection and curvature of crustal faults. The results demonstrate the dependence of fault interaction in the system on kinematic conditions, as well as the influence of minor faults on the kinematics of major basin bounding master faults. We show that although most of the deformation in the region is taken up by the eastern boundary faults of the Rhine Graben, all faults in the system have the potential to be (re)activated. In particular, a fault system underlying the front of the Jura fold and thrust belt appears to accommodate a large part of the intraplate deformation.  相似文献   
18.
The article presents an approach for creating a computationally efficient stochastic weather generator. In this work the method is tested by the stochastic simulation of sea level pressure over the sub-polar North Atlantic. The weather generator includes a hidden Markov model, which propagates regional circulation patterns identified by a self organising map analysis, conditioned on the state of large-scale interannual weather regimes. The remaining residual effects are propagated by a regression model with added noise components. The regression step is performed by one of two methods, a linear model or artificial neural networks and the performance of these two methods is assessed and compared. The resulting simulations express the range of the major regional patterns of atmospheric variability and typical time scales. The long term aims of this work are to provide ensembles of atmospheric data for applied regional studies and to develop tools applicable in down-scaling large-scale ocean and atmospheric simulations.  相似文献   
19.
20.
The natural river water reference material SLRS‐6 (NRC‐CNRC) is the newest batch of a quality control material routinely used in many international environmental laboratories. This work presents a nine‐laboratory compilation of measurements of major and trace element concentrations and their related uncertainties, unavailable in the NRC‐CNRC certificate (B, Cs, Li, Ga, Ge, Hf, Nb, P, Rb, Rh, Re, S, Sc, Se, Si, Sn, Th, Ti, Tl, W, Y, Y, Zr and REEs). Measurements were mostly made using inductively coupled plasma‐mass spectrometry. The results are compared with equivalent data for the last batch of the material, SLRS‐5, measured simultaneously with SLRS‐6 in this study. In general, very low concentrations, close to the quantification limits, were found in the new batch. The Sr isotopic ratio is also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号